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We study analytically and numerically the effect of nonlinearity on transmission 
of waves through a random medium. We introduce and analyze quantities 
associated with the scattering problem that clarify the lack of uniqueness due to 
the nonlinearity as well as the localization of waves due to the random 
inhomogeneities. We show that nonlinearity tends to delocalize the waves and 
that for very large scattering regions the average transmitted energy is small. 

KEY W O R D S :  Localization; nonlinear waves. 

1. I N T R O D U C T I O N  

In one-dimensional, linear random media the amount of energy trans- 
mitted by monochromatic waves is exponentially decreasing as a function 
of the size of the scattering region. This is one of the several manifestations 
of localization of waves in one-dimensional random media. In this paper 
we analyze the effect of nonlinearity on these phenomena. 

We consider a simple model of monochromatic light waves propa- 
gating in a layered, nonlinear dielectric medium. Such a medium can have 
optical bistability whether or not there is randomness. An optical device is 
said to be bistable if two (or more) output states are possible for a given 
input state, depending on hysteresis. See Fig. 1. Bistable devices have many 
potential applications, since they can be used as direct optical switches. (9) 
This paper analyzes the effect of randomness on bistability. 

As the length of the scattering region increases, so in general does the 
multiplicity of solutions. We therefore introduce the average multiplicity of 
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Fig. I. Optical bistability. The dotted lines show the jumps the hysteresis curve would take 
if the input intensity w were slowly increased and then slowly decreased in that region of the 
curve. The calculations were done from Eqs. (3) and (5) with L = 300 and e = 0.25. 

solutions with given transmittivity as a function of the strength of the non- 
linearity and the size of the scattering region. In the linear case, localization 
implies that this quantity goes to zero as the size of the scattering region 
increases for any nonzero transmittivity. If the same happens in the 
nonlinear case, then we have localization of all solutions. In this paper we 
compute and analyze the properties the average multiplicity of solutions 
in the weakly nonlinear diffusion limit. In this limit the nonlinearity and 
randomness are small and the size of the scattering region is large. 

We find that the average transmittivity increases with nonlinearity for 
a fixed scattering region, indicating that nonlinearity tends to delocalize the 
waves. We also find numerically that the average transmittivity decreases 
with the size of the scattering region for fixed nonlinearity. The decay rate 
of the average transmittivity is well known in the linear case. In the 
nonlinear case the average transmittivity goes to zero as the size of the 
scattering region increases, but we have not computed the decay rate in 
this paper. 

Both bistability and localization are discussed in some detail in refs. 4 
and 5. The equations and scaling we use are given in Section 2. In Section 3 



Transmission of Waves by a Nonlinear Random Medium 569 

we discuss the relation of our problem to the simpler fixed output problem 
discussed in refs 2 and 5 and elsewhere. Studies related to ours are presen- 
ted in refs. 1, 3, and 10. In Section 4 we define the average multiplicity of 
solutions and the average transmittivity, which are the quantities of 
principal interest in this paper. In Section 5 we describe briefly the weakly 
nonlinear diffusion limit, which is well studied in the literature, (5'6'8) and 
analyze the behavior of the average transmittivity as the scattering region 
increases. In Section 6 we present the results of numerical simulations for 
both the original model equations and the limit equations. 

To resolve the nonuniqueness of the time harmonic nonlinear scatter- 
ing problem, we must go to a time-dependent formulation, which is not 
done in this paper. Many solutions of the time harmonic problem will be 
dynamically unstable, that is, unstable for the initial value problem, but 
they are nonetheless counted in the average multiplicity and transmittivity 
that we study here. Thus, while these quantities are useful analytical tools 
for studying nonlinear localization, they are not directly related to physical 
observables. 

2. F O R M U L A T I O N  A N D  S C A L I N G  

We consider propagation of monochromatic light waves in a one- 
dimensional, nonlinear, and randomly inhomogeneous Fabry-Perot  6talon 
of length L with a wave incident form the right. If we take x = 0 to be the 
left side of the medium, the equations for the (complex) scalar field 
amplitude u are 

uxx+k2n2(x, juj2)u=O for O < x < L  

u(x)= Ao(e-ikX + Re ikx) for x > L 

u(x)= AoTe -~k-" for x < O  

Here n is the index of refraction, k is the wavenumber, T and R are the 
transmission and reflection coefficients, and A0 is the incident wave 
amplitude. We restrict attention to a cubic nonlinearity and a small 
random perturbation so that 

n2(x, lu[ 2) = 1 + ~ ( x )  + �9 lu[ 2 

Here # is a material constant determined by the Kerr nonlinearity of the 
medium. We assume that/~ is a stationary, ergodic process with correlation 
length l. The parameter e controls the size of the noise. Without noise and 
nonlinearity, n =-1 and the medium is exactly matched to the adjoining 
space. 
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Since we are considering monocromatic  waves, we can scale length by 
the wavelength. For  simplicity we will use L for k times the length of the 
medium. We also scale the wave u by the incident amplitude A 0. The 
resulting equation inside the medium is 

~lxx ~- I1 "~- G]2(X ) -~ W j/dl2"]/.,/= 0 (1) 

where w = # IA0l 2 is proportional  to the incident intensity. If we require the 
u and ux to be continuous at the boundaries, then 

ux(O) + iu(O) = 0 
(2) 

u:,( L ) - iu( L ) = -- 2ie-'L 

which along with (1) is the scattering problem. 
The transformation u(x)=q(x)eiv(x)/IT] allows the boundary value 

problem (1, 2) to be converted into a family of initial value problems. (4,s~ 
One reason for converting to an initial value problem is that solutions of 
the scattering problem are not unique in general; we have bistability. For  
the initial value problem the solution is unique and nonuniqueness arises 
from the algebraic problem of satisfying the boundary conditions. The 
equation for ? can be solved in terms of q and we get 

1 
qxx---qS+ [1 + ~ ( x ) ] q + o : q  3 =0 ;  q (0 )=  1, qx(0) = 0  (3) 

where e = wiT[2. Note that the parameter ~ is equal to the scaled output 
intensity. For a given fixed c~ we can solve (3) and determine the trans- 
mission coefficient and corresponding input intensity from the boundary 
condition at x = L, 

4 
I TI 2 _ qZ(L; c~) + q2(L; ~) + 2 + 1/q2(L; ~) (4) 

~ 1 [ ~  l ] 
w - I TI2 - 4 c~ q:~(L; c~) + q2(L; ~) + 2 + q2(L; c~-----~) (5) 

We use this initial value formulation for numerical simulations of the 
scattering problem. In Section 5 we use a different initial value formulation 
with the same parameter  c~ to compute quantities in the white noise limit. 

3. FIXED I N P U T  A N D  FIXED O U T P U T  

In the scattering problem it is natural to consider a specified input 
intensity. We would like to know the output state as a function of the input 
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state. When the output is fixed, then e is constant and we have the initial 
value problem (3), which is the fixed output problem. 

In the linear case, where ~ = 0 ,  the two problems are equivalent 
because there is a unique output intensity for a given input intensity and 
vice versa. However, when there is bistability there could be several output 
intensities for a given input intensity. Figure 1 was generated by increasing 
the fixed output ~ in small steps to find the input w. It is clear from Fig. 1 
that there can be no uniqueness of [TI2 as a function of w. 

Our goal is to solve the scattering problem in the random case using 
results from the initial value problem (3). For simplicity we will refer to the 
transmittivity by the variable T, so ITJ 2 = z. Given a solution q(L; c~) of (3), 
the solutions of the scattering problem are the fixed points of 

4 
~ -  2 . (6) qx(L, wT) + qZ(L; wz) + 1/qZ(L; wr) + 2 

In the linear case the solution is unique, since q does not depend on c~, but 
in the general nonlinear case, there is little hope of finding all solutions to 
this problem. 

4. AVERAGE MULTIPLICITY AND TRANSMITTIV ITY 

We have found that the statistical quantity which gives us the most 
information about localization or delocalization is the average density of 
solutions of Eq. (6) as a function of r =  IT[ 2, which we denote by 
D(T; L, w). Let N(%, T2; L, w) be the expected number of solutions z of (6) 
lying between IT[2= zl and ]TIT= %. Then the average density of solutions 
is given by 

N(T, T + AT; L, w) 
D(T; L, w) = lim 

A ~ 0  A'C 

Clearly the total number of solutions is given by N(0, 1;L, w)=  
~o ~ dr D(T; L, w). This is a measure of how likely bistability is in the non- 
linear case. The density can also be used to find the average transmittivity 
defined by 

w dr TD(r L, w) 
(7) 

The average multiplicity density D gives a lot of information about 
localization. When there is localization, the density function will have a 
peak near T -- [ Tt2 = 0 and most of the mass will be near zero. However, if 

822/63/3-4-10 
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the peak is not near zero and the mass is spread out, it is no longer 
reasonable to say there is localization. Figure 5 shows two average multi- 
plicity density functions, one indicating localization and one not. 

We compute the average multiplicity density function using the Kac-  
Rice formula, which we recall briefly. Suppose the joint distribution of a 
random function X(t )  and its derivative with respect to t, X(t) is known. 
Then the expected number of zeros of X(t )  between tl ad t2 is given by 

N( t , ,  t2)= E t f ' 2 6 ( X ( t ) ) 1 2 ( 0 [  d t}  
k ' t t  

Let X ( r ) = ~ - F ( r ) ,  where F(z) is the right-hand side of (6). Then the 
average density of solutions is simply given by the formula above with t 
replaced by z and stripped of the t integral, 

0 

D(r; L, w) = j dy Px(r162 y)  lyl 

Thus, to determine D, we need the joint distribution of X(r) and 2(r).  

(8) 

5. D I F F U S I O N  L IMIT  

We return to the boundary value problem (1), (2) and transform it as 
follows. We let 

u = Ae ix + Be -ix 

ux = i(Ae iX - Be--ix) 

Then A and B satisfy the boundary value problem 

i Be -2ix) A x = ~ ( ~  + wC) (A  + 

(9) 
i 

Bx = - ~ (e# + wC)(Ae 2ix + B) 
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with 

C = I/,/I 2 =  IAJ2+ ]9t2+ 2 R e ( A B e  2i:r 

and the boundary conditions 

A(O) = O, B ( L )  = 1 

The reflection and transmission coefficients are given by 

B(O) = T, A ( L )  = R 

We convert the boundary value problem (9) into an initial value problem 
by replacing A by A / T  and B by BIT.  Letting 

c~= w ITI 2 

we get 

i 
A x  = -; (eli + 7 C ) ( A  + B e - 2 ' x )  

z 

i 
Bx = - = (eli + ccC)(Ae 2iX + B)  

z 

with 

A(0) = 0, B(0) = 1 

Then, with z = ]Tp 2 we have 

1 
r -  w = ~  IB(L,  c~)l 2 

IB(L, c,)l 2' 

(10) 

(11) 

which is equivalent to (6). 
The weakly nonlinear diffusion limit amounts to letting the size of the 

scattering region L be large, L = O ( 1 / e 2 ) ,  and the incident intensity 
w = O(e2). In this limit localization effects are fully developed in the linear 
case and bistability is present in a canonical way for the nonlinear deter- 

1 
"c = ]B(L, wr)l 2 (12) 

This is the parametric representation of the input-output problem; w is the 
incident intensity, r is the proportion of incident intensity transmitted, and 

/> 0 is the parameter. Eliminating e leads to the fixed point equation 
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ministic problem. Replacing x by x/e 2, L by L/8 2, ~ by e2e, and w by e2w, 
we arrive at the sealed form of (10), (11), 

i [1 [x~ ) Be 2~x/~) (A+ 

i (~ (X) )(Ae2iX/e2_t - B x = - ~  # ~ + ~ C  B) (13) 

C = ]AI 2 + IBI 2 + 2 Re(ABe 2ix/~2) 

A(0) = 0, B(0) = 1 

The fixed point relation (12) remains the same in the scaled problem. 
The limit of the process (A, B) as e -~ 0 has been studied for a wide 

class of random coefficients/~ in the linear case ~ = 0. (6) When c~ is not zero 
the analysis is virtually identical and will not be repeated here. The main 
difference is that in order to calculate the average multiplicity of solutions 
D for the fixed point equation (12) we need not only the limit law of B, but 
the joint limit law of B(L, c~) and B~ = ~B(L, cO/&~, as we saw in (8). This 
means that we must get the limit law of A, B, A~, and B~. This is the main 
difference with the previous work. (6) 

As in ref. 6, it is convenient to use polar coordinates. Noting that the 
solution of (13) satisfies 

IBI2- IAt2= 1 
we set 

0 
A = e-~(~ + 4,)/2 sinh - 

2 

0 
B = e-~(+- ~)/2 cosh - 

2 

Then it is easy to see that 0 and ~ satisfy the equations 

0 x = -  ~ +c t coshO+~s inhOc o s  ~ - 2 x  

~ x = -  /~ + ~ c o s h 0 + ~ s i n h 0 c o s  0 - 2 x  

x I1 + cos ( ~ - ~ - ~ )  coth 0 ] 

(14) 
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and ~b decouples and need not be considered. The initial conditions are 
0(0, ~) = 0 and ~ need not be given initially because of the singular form 
of the equations. The fixed point equation in polar coordinates has the 
form 

2 
- (15) 

1 + cosh O(L, wz) 

We need therefore to determine the limit law of O(L, ~) and O~(L, ~) as 
e ~ O. If P is the joint density of 0 and O~ in the limit, then the average 
density of solutions is given by 

D(~; L, w): fj" do<P(o,o~;L, w~) a (~ 

2wO= sinh 0 
• 1 + (5 +---~osh o ? 

�9 ~-fdO~P(gosh 1 ( ! -  1), O= 

2) 
l + cosh 0 

'r(1 1 I ;L,w'r - r ) l / 2  ~-O=w (16) 

To determine the asymptotic limit of 0 and 0~ as e--,0 we must 
analyze (14) along with equations for 0~ and ~ the same way as in ref. 6 
or ref. 8. The equations for 0~ and ~ for e > 0  are obtained from (14) by 
simply differentiating with respect to c~, so we will not write them out. We 
will also not show in detail the derivation of the limit diffusion process, 
since that is amply discussed in the above references and in ref. 5. We 
simply write the generator of the limit process, which is 

8 0 2 0 2 0 2 
= R~. b-~ + csch~ O ~ + r ao~Ta~ + ( 02 esch" 0 + r coth 2 e) 0r 

8 2 82 
- 2g,~ coth 0 - -  20~ ~ csch 2 0 - -  

~0 o~,~ 0o~ ~,~ 

L_0~  ~1  3 + c o t h 0 8 0  csch20ffff~ - ~  (c~O~sinh O+cosh 0 )~-~  (17) 

Here R c is defined by 

& = ~ f o  ~ R(s) cos(2s) d~ 

R(s) = ,:{~(s) ~,(o)} 
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and is a positive constant. Since we are only interested in the law of 0 and 
0~ we have dropped terms that involve ~ in (17) since they decouple from 
the rest in the limit. The probability density of 0, 0~, and ~:  is the solution 
of the Fokker-Planck equation 

~P 
- 5 ~  (18) 

Ox 

with 5r the (suitably defined) adjoint of ~ .  
From the form of the generator for 0, 0~, and ~J~ we see that it is not 

easy to get a feeling for how these processes behave. It is useful to note, 
however, that 0, 0~, and ~ are solutions of the It6 stochastic differential 
equations 

dO = Rc coth 0 dx + (2Rc) 1/2 dw 1 

dos = -R~.O~ csch 2 0 dx+ (2R,.) 1/2 ~J~ dw2 (19) 

dt)~ = - ~Rc(c~O ~ sinh 0 + cosh 0) dx 

- (2Rc) v2 ( ~  coth 0 dwl + O~ csch 2 0 dw2) 

where wl and w2 are independent, standard Brownian motions. Note that 
0 decouples from 0~ and ~J~ and is simply the radial part of Brownian 
motion on the hyperbolic disk. (6) 

When w = 0 it is easy to see that D(z; L, 0) behaves like the proba- 
bility density of r = 1TI 2 in the diffusion limit computed in ref. 6. The mean 
transmittivity at w = 0 is 

4e--RcL/4 ~ rl2e _,2 dq (20) 
f(L, 0 ) -  ~ fo cosh[~(RcL) 1/23 

which is formula (7.13) in ref. 6. As L tends to infinity, we have 

~ 5 / 2  e -- R c L / 4  

~(L, O) 2(RcL)~/~ (21) 

When the nonlinearity is not zero the mean transmittivity is given by 

{f f  ( 2w ) 2 2w0~ sinh 0_ } 
"g(L,w)= dOdO, P O,O~;L;l+coshO l + c o s h 0  l + ( l + c o s h 0 ) 2  

{;; ( 2w )]1 + 2wO~-sinhO ~ 1 
x dOdO~P O,O~;L;l+cosh 0 ( l + c o s h 0 ) 2  j 

(22) 
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which follows from (7) and the first line in (16). In Fig. 8 we plot "~ as a 
function of L for different values of w and we see that indeed the average 
transmittivity increases with w for a fixed scattering region. 

In the nonlinear case where w is positive the denominator in (22) goes 
to infinity as L increases, as seen in Fig. 6. Therefore, the large-L behavior 
of "~(L, w) for w > 0 cannot possibly be like the linear case (21). One might 
think that is true because once the fields become small deep inside the scat- 
tering region, the linear theory takes over and hence we have localization. 
However, as L increases, more solutions are created and they localize at an 
even larger L. All this is contained in "~(L, w), which is a statistical average 
and an average over all solutions. Its large-L behavior is not known. 

6. N O M E R l C A L  S I M U L A T I O N S  

We have used numerical simulations in both the limit and finite-e case 
to explore the theory and to understand the range of its validity. 

In the e --+ 0 limit we will study D and "g by simulating numerically the 
limit It6 equations (19). We do not solve the Fokker-Planck equation 
because it is too high-dimensional to easily solve and it has singularities. 

Note that the It6 equations (19) are singular at the initial condition 
0 (0 )=0 .  This is actually a removable singularity arising from the polar 
coordinates. If we use Cartesian coordinates 

0 cos 4` and v = tanh ~ sin 4' u = tanh 

we can use the same process as before and get It6 equations 

d u =  ( | - r 2 ) d f l l  

dv = (1 - r 2) dfl2 

d. 1+r2 
\ ~ _  r 2 + 4~ ~l -_- r-g-~ ] dx  - (2Re) 1/2 ( uu ~ dill + vu~ d fl 2 ) 

dv~ 

(23) 

3 ( l + r  2 u u ~ + v v ~ )  
= -- ~ u \ ~ _ r  2 + 4c~ - ( i - _ _ ~ 2  ] dx  - (2R c) 1/2 ( blV~ dfl 1 + vv~ tiff 2) 

where r =  ( u 2 + v 2 )  1/2. These equations are not singular near the origin. 
Since the 0 process tends to grow (linearly) toward ~ as x -+  0% r 
approaches 1. Even though r <  1, numerical stability problems arise in 



578 Knapp et  al. 

20.0 

15.0 

4 10.0 

5.0 

I ~ I ' : I 

/; 

,,. ; :  

i I i 

0.2 

,,,':",�9149 
," ,. 

.' .., 

J- w=O.O~ 
w=O.i6 I 

. . . -"- . . .  

�9 � 9  ,, 

-..�9 

0 . 0  1 , I "1 , ~  

0 , 0  0 , 4  0 . 6  0 , 8  1 . 0  

T 

Fig. 2. Average density of solutions D(~; L, w) as a function of transmittivity ~ for w = 0 and 
w= 0.16 for L = 30.0. The density was compiled using 5000 realizations with Rc ~-0.055. 

simulating Eqs. (23) when r is near 1. To eliminate this problem, we started 
the simulations using a discrete analogue of Eqs. (23) and for r >  rmi n we 
used a hybrid system with (u, v, 0~, ~ )  to continue the calculation. In 
practice we got essentially the same results with the threshold in the range 
0.25 < rmin < 0.75. 

The results of the simulations for the limit process are shown in 
Figs. 2-4. Figure 2 shows the function D(z; L, w) for L = 30 and w = 0 and 
w=0 .16 .  The solid curve for w = 0  has its peak and most of its mass near 
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Fig. 3. Average multiplicity of solutions N(0, I; L, w) as a function of w for L = 7.5, 15.0, 
22.5, and 30.0. The averages are for 5000 realizations with R c ~-0.055�9 



Transmission of  Waves by a Nonlinear Random Medium 579 

zero. This is an indication of localization. However, the mass for the dotted 
curve for w=0.16  is shifted to the right from zero. Since we are simulating 
the white noise limit, there is a lot of fluctuation, so there appear to be 
many peaks in this curve, but if we were able to compute enough realiza- 
tions, the curve would be much smoother. The shift of the curve to the 
right indicates delocalization in the nonlinear case. Notice also that the 
w = 0.16 curve is always higher than the one for w = 0. This is because in 
the nonlinear case there may be multiple solutions. The average multi- 
plicity of solutions is quantified in Fig. 3, which shows N(0, 1; L, w) as a 
function of w for L = 7.5, 15.0, 22.5, and 30.0. These curves appear to be 
increasing exponentially fast, but we have not been able to carry the 
simulations out far enough to verify this. These curves can roughly be 
interpreted as predicting the likelihood of bistability. For example, if 
N(0, 1; L, w) = 5, a typical realization would have five possible solutions, or 
output states, for a given L and w. (Not all of these would be stable, but 
it is necessary to solve the time-dependent problem to determine stability.) 
Figure 4 shows the weighted average transmittivity ? as a function of w for 
L = 7.5, 15.0, 22.5, and 30.0. Note that for the larger times, where localiza- 
tion was being felt in the linear case, these curves are increasing as a 
function of w. This is further evidence for delocalization for nonlinear wave 
propagation. 

For  comparison we also computed the average density of solutions 
directly from the equations for the initial value problem (3) with a positive 
e. The code used for the positive e simulations is described in detail in ref. 5. 
The process /~ is modeled by having constant values #i distributed 

1,0 

Fig. 4. 
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uniformly on [ - 1 ,  1] over correlation intervals of constant correlation 
length l. Over each correlation interval the equation can be solved exactly 
using Jacobian elliptic functions. The result at the end of a correlation 
interval is then used as the initial condition for the next. To find the 
average number of roots and the function F(z) we have for each realization 
of the random media traced the r versus w curve by using closely spaced 
values of c~ as in Fig. 1 [with the c~ axis transformed to z using (4)]. As the 
curve is advanced, the solution is checked to see if it has crossed any of a 
given discrete set of w. When one of these values of w has been crossed, the 
value of r is stored in an appropriate bin. The density is approximated by 
finding the average number of r values that lie in each bin for a given w 
and L. In the results shown here we have used scaled values of the 
variables so that comparison with the limit theory is easier--i.e., we use 
w =  physical w/~ 2 and L=phys ica l  Le 2. We used a physical correlation 
length l = 1.5. Note, for example, that scaled L = 30 corresponds to a physi- 
cal length L--480,  which is 320 slabs. 

Figures 5-7 show the same quantities as Figs. 2-4, except that the 
results were found directly from the model equations with e = 0.25. The 
results are qualitatively comparable to those for the limit e --* 0. The physi- 
cal L and w quantities were chosen so that they matched the scaled L and 
w quantities in the limit calculations. 

The graphs for the weighted average transmittivity ~ agree very closely 
qantitatively. The density functions, however, do not match nearly so 
closely. It is readily apparent that the fluctuations for the limit equations 
are significantly larger. The curves would be closer if we had done the 
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Fig. 5. Average density of solutions D(~; L, w) as a function of transmittivity z for w = 0 and 
w = 0.10 for L = 30. The density was compiled using 1000 realizations with e = 0.25. 
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Fig. 6. Average  mul t ip l ic i ty  of so lu t ions  N(0, 1; L, w) as a function of w for L = 7.5, 15.0, 

22.5, and  30.0. The averages  are for 1000 rea l iza t ions  wi th  e = 0.25. 

direct simulations with a smaller e, but this was not practical, since the 
computat ion time increases quickly as e is reduced due to the L =  O(e 2) 
scaling and the increase in fluctuations. The most important property we 
see in the density function for w > 0 ~ t h a t  the mass of the curve is shifted 
significantly to the right--is  seen for both simulations. The curves of 
N(0, 1; L, w) as a function of w have the same shape for the two different 
simulations, but the sizes differ. This is also due to the fluctuations. The 

Fig. 7. 
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Fig. 8. Weighted average transmittivity f as a function of x for w = 0.0, 0.04, 0.08, 0.12, and 
0.16. The averages are for 1000 realizations with e = 0.25. 

graphs  of the weighted average t ransmi t t iv i ty  ma tch  since by weight ing we 
have canceled out  the effects of  the larger  f luctuations.  

F igure  8 provides  a direct  compar i son  of the decay of the weighted 
average t ransmi t t iv i ty  for the l inear  and  nonl inear  cases. The solid curve 
represents  the exponent ia l  decay of the l inear  local izat ion.  F o r  small  L, 
is near ly  ident ical  for the l inear  and  nonl inear  cases. In  this regime non-  
l inear  effects are no t  s t rong and  there is no bistabil i ty.  However ,  above  
some L, the decay slows for the nonl inear  cases and  eventual ly  appears  to 
stop. This indicates  tha t  there are a significant number  of states which are 
delocalized.  

The  results we have shown here give s t rong evidence tha t  there 
exist delocal ized t ransmiss ion  states for the p r o p a g a t i o n  of waves th rough  
a r a n d o m  medium.  However ,  since we have only cons idered  the t ime 
ha rmon ic  p rob lem,  not  all of these states are physical.  A comple te  s tudy 
with a t ime-dependen t  mode l  needs to be done  to fully unde r s t and  this 
issue. 
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